β1-adrenergic receptor activation enhances memory in Alzheimer's disease model

نویسندگان

  • Laurence Coutellier
  • Pooneh Memar Ardestani
  • Mehrdad Shamloo
چکیده

OBJECTIVE Deficits in social recognition and learning of social cues are major symptoms of neurodegenerative disorders such as Alzheimer's disease (AD). Here we studied the role of β1-noradrenergic signaling in cognitive function to determine whether it could be used as a potential therapeutic target for AD. METHODS Using pharmacological, biochemical and behavioral tools, we assessed social recognition and the β1-adrenergic receptor (ADR) and its downstream PKA/phospho-CREB (pCREB) signaling cascade in the medial amygdala (MeA) in Thy1-hAPPLond/Swe+(APP) mouse model of AD. RESULTS Our results demonstrated that APP mice display a significant social recognition deficit which is dependent on the β1-adrenergic system. Moreover, betaxolol, a selective β1-ADR antagonist, impaired social but not object/odor learning in C57Bl/6 mice. Our results identifies activation of the PKA/pCREB downstream of β1-ADR in MeA as responsible signaling cascade for learning of social cues in MeA. Finally, we found that xamoterol, a selective β1-ADR partial agonist, rescued the social recognition deficit of APP mice by increasing nuclear pCREB. INTERPRETATION Our data indicate that activation of β1-ADR in MeA is essential for learning of social cues, and that an impairment of this cascade in AD may contribute to pathogenesis and cognitive deficits. Therefore, selective activation of β1-ADR may be used as a therapeutic approach to rescue memory deficits in AD. Further safety and translational studies will be needed to ensure the safety of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β1-Adrenergic Receptors and HCN Channels

The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration aft...

متن کامل

The recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review

Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...

متن کامل

The recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review

Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...

متن کامل

Effects of exercise on spatial memory deficits induced by nucleus basalis magnocellularis lesions

Introduction: Previous studies have shown that exercise enhances cognitive and functional capacities in patients with Alzheimer's disease (AD). In this study, we investigated the effect of long-term (60 days) and short- term (10 days) exercise on the spatial memory deficits in an animal model of AD. Methods: Fifty male rats were divided into 5 groups 1) intact, 2) sham, 3) sham-Alzheimer 4) ...

متن کامل

Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs.

Norepinephrine (NE) is a key modulator of synaptic plasticity in the hippocampus, a brain structure crucially involved in memory formation. NE boosts synaptic plasticity mostly through initiation of signaling cascades downstream from beta (β)-adrenergic receptors (β-ARs). Previous studies demonstrated that a β-adrenergic receptor agonist, isoproterenol, can modify the threshold for long-term po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014